Exploratory Scenario Planning for Disruptive Technologies

AMPO | October 24, 2019

Lorna Parkins AICP, Bill Thomas CPM | Michael Baker International
30 Years of Planning & Forecasting

Explain the past → Predict the future
What happens when predictors stop predicting?

Estimate/Forecast of US Vehicle Miles Traveled (VMT) per capita based on Gross Domestic Product (GDP) 1970-2014
Where do we go from here?
Disruptors cause uncertainty

Technology Advances

Changing Values

Globalization

Uncertainty
Generational Changes
Different Values Govern Life Choices
Economic Disruptors
Transportation Technology Disruptors

V2N

V2P

V2V

V2I
Environmental/Energy Disruptors

This Photo by Unknown Author is licensed under CC BY-SA
Exploratory Planning for Uncertain Times

What is the range of outcomes?

What are the risks?

What are the opportunities?
Explore a Range of Potential Outcomes . . .

Drivers of Change

Future Scenario 1

Future Scenario 2

Future Scenario 3

. . . to be Prepared for what COULD Happen
Framework for Exploratory Scenario Planning

Drivers

- Economic, Lifestyle/Demographic
- Technology, Environment

Scenarios

- Organize Drives into a range of potential futures

Inputs

- Control totals, assumptions about the drivers, and modeling “Levers”

Outcomes

- Performance Measures based on the study Goals and Objectives
Hampton Roads Study Framework

RANGE OF FUTURE POSSIBILITIES

ONE FUTURE POSSIBILITY

Baseline & Greater Growth Forecast Concept

Regional Population/Employment

Greater Growth Forecast

Baseline Forecast

2015
2045
<table>
<thead>
<tr>
<th>Scenario Narratives – Hampton Roads Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater Growth on the Water</td>
</tr>
<tr>
<td>What happens if jobs focus on the waterfront, housing choices are varied, and transportation technology adoption is moderate?</td>
</tr>
<tr>
<td>Greater Growth in Urban Centers</td>
</tr>
<tr>
<td>What happens if jobs and housing focus in urban areas, with greater multimodal availability and high adoption of connected vehicle technology?</td>
</tr>
<tr>
<td>Greater Suburban/Greenfield Growth</td>
</tr>
<tr>
<td>What happens if jobs and housing are developed in dispersed activity centers, with a higher level of truck transportation and high adoption of autonomous vehicle technology?</td>
</tr>
</tbody>
</table>
Greater Growth on the Water

Growth in water-oriented activity. Port of Virginia becomes even more competitive with freight more multimodal. More dispersed housing locations. Moderate assumptions for CAV adoption and network adaptation.

Greater Growth in Urban Centers

Significant economic diversification. Low space requirements per job. Large role for “digital port.” New professionals prefer to live/work in urban settings. High level of CV adoption and low auto ownership/high TNC mode.

Greater Suburban/Greenfield Growth

Growth is suburban/ exurban, but growth includes walkable mixed use centers. Port of Virginia becomes even more competitive. “Digital port” brings additional jobs. Housing is more suburban. High level of AV adoption and network adaptation.

What These Will Help Us Test

- Test greater cross-harbor travel in particular.
- Test more urban and multimodal travel patterns.
- Test more overall regional travel.
Chain of logic from inputs to outputs

What could happen?

What will change?

What are the effects?
Example: Baseline technology assumptions by placetype

- Baseline assumption links land use/economics to future behavior
- Each scenario adjusts placement of the lines (overall level of adoption)

[1] [2] Information above was inspired by public input
Forecasting Transportation Impacts under Technology Uncertainty
Challenges

Adoption
• Timing
• Magnitude
• Type
• Location(s)

Forecasting Tools
• CAV/SAV modes
• Behavioral impacts
CAV Adoption Timelines

Short Term

- Existing planning and modeling tools will suffice.
- Travel behavior changes will not be significant.
- Increasing use of new modes, such as MaaS.
- New types of access and egress options for public transportation systems.

Mid-Term

- CAVs will become more widespread, however non-AVs will still be present.
- Modeling and planning tools need to address problems related to having mixed fleets of CAVs and non-CAVs.

Long-Term

- CAVs will be pervasive and will require a complete set of new assumptions about urban form, land use, parking requirements, and other indirect impacts in addition to the direct impacts on travel behavior and choice.
- Planning tools and the models that support them will need to be based on scenario assumptions for this longer-range timeframe.

Source: NCHRP Research Report 896: Updating Regional Transportation Planning and Modeling Tools to Address Impacts of Connected and Automated Vehicles
<table>
<thead>
<tr>
<th>Behavioral Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAVs drive up to carsharing users, reducing access time.</td>
</tr>
<tr>
<td>Self-parking, increase ease of use.</td>
</tr>
<tr>
<td>Reduction in vehicle accidents; increased travel time reliability.</td>
</tr>
<tr>
<td>Changes in roadway capacities.</td>
</tr>
<tr>
<td>Increased travel due to latent demand.</td>
</tr>
<tr>
<td>Provide easier first and last mile connections with major public transit corridors.</td>
</tr>
<tr>
<td>Change in travelers’ values-of-time.</td>
</tr>
<tr>
<td>Introduction of zero-occupant vehicles (ZOVs).</td>
</tr>
</tbody>
</table>
Impact on the 4-Step Planning Process

<table>
<thead>
<tr>
<th>Step</th>
<th>Impact/Adjustment</th>
<th>Issues/Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip Generation</td>
<td>Auto Ownership
• Overall ownership level.
• CAV vs. Conventional ratio.
Induced Trips
• Trips by seniors, children (non-work trips).</td>
<td>Level of CAV adoption.
Private vs. shared vehicles.
Account for latent travel demand.</td>
</tr>
<tr>
<td>External/Truck Trip Generation</td>
<td>Induced Trips
• Factor trip rates.
Time-of-Day
• Adjust diurnal distributions.</td>
<td>Potential increased mobility.
Passengers sleep during long distance trips.
Shift in truck trips to overnight to avoid daytime congestion.</td>
</tr>
<tr>
<td>Step</td>
<td>Impact/Adjustment</td>
<td>Issues/Effects</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Trip Distribution</td>
<td>• Adjust trip lengths for home-base work travel.</td>
<td>• Longer commutes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added productivity.</td>
</tr>
<tr>
<td></td>
<td>• Longer commutes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Added productivity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode Choice</td>
<td>• Add MaaS modes.</td>
<td>• Ride hailing.</td>
</tr>
<tr>
<td></td>
<td>• Add CAV & conventional submodes.</td>
<td>• Micro transit.</td>
</tr>
<tr>
<td></td>
<td>• Ride hailing.</td>
<td>• First/last mile -public transport.</td>
</tr>
<tr>
<td></td>
<td>• Micro transit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• First/last mile -public transport.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOV Trip Generation</td>
<td>• Add vehicle trips to account for new trip tours with driverless vehicles.</td>
<td>• HH CAV to family, home.</td>
</tr>
<tr>
<td></td>
<td>• HH CAV to family, home.</td>
<td>• MaaS CAV to next pickup, depot.</td>
</tr>
<tr>
<td></td>
<td>• MaaS CAV to next pickup, depot.</td>
<td></td>
</tr>
</tbody>
</table>
Impact on the 4-Step Planning Process

<table>
<thead>
<tr>
<th>Step</th>
<th>Impact/Adjustment</th>
<th>Issues/Effects</th>
</tr>
</thead>
</table>
| Trip Assignment | • Adjust passenger car equivalencies to reflect mixture of CAVs and conventional vehicles.
 • Designate CAV only lanes/facilities. | • Tech lanes.
 • Changes in speeds and capacities. |
Hampton Roads Study – Technology Impacts

Land Use Model Inputs

Scenario Technology Assumptions

E+C Network

Dashboard
- Output to Dashboard that evaluates each Scenario for Transportation Results

HRTPO Travel Demand Model evaluates Transportation Performance under each Scenario

Economic Model
- Output to Economic Model for further analysis
- Output for further modeling of each alternative
Recent update to the HRTPO travel model included a framework to account for the behavioral impact of technology.

- Ability to adjust existing components and the addition of zero occupant vehicle (ZOV) trips.
- Addresses both privately owned CAVs and shared CAVs.
- Able to specify assumptions about how each behavioral parameter may change for various market segments.
Quantifying Behavioral Parameters

PCE factors for CAVs in mixed flow?
Vehicle occupancies (CAV and MaaS)?
MaaS mode shares?
ZOV trip type mix and depot capacities?

Induced demand by trip purpose?
CAV/conventional split for trucks and external trips?
Change in VOT (peak, off-peak)?
Share of CAVs in household vehicles?

Parameter Assumptions
Model Execution
Output Review
Sensitivity Analysis

Adjust parameters based on scenario goals
Review

Adjust
parameters
based
on
scenario
goals

Parameter
Assumptions
Hampton Roads Study Activities

In Process

• Development of detailed technology-oriented scenario narratives.
• Review and testing of updated HRTPO travel model.
• Quantify behavioral parameters by scenario.

Future

• Execute travel model and tabulate results in dashboard by scenario.
Selected References

- Ways to Consider Driverless Vehicles in Virginia Long-Range Travel Demand Models, John S. Miller, Ph.D., P.E., and Di Kang, March 2019.
Stay Tuned!