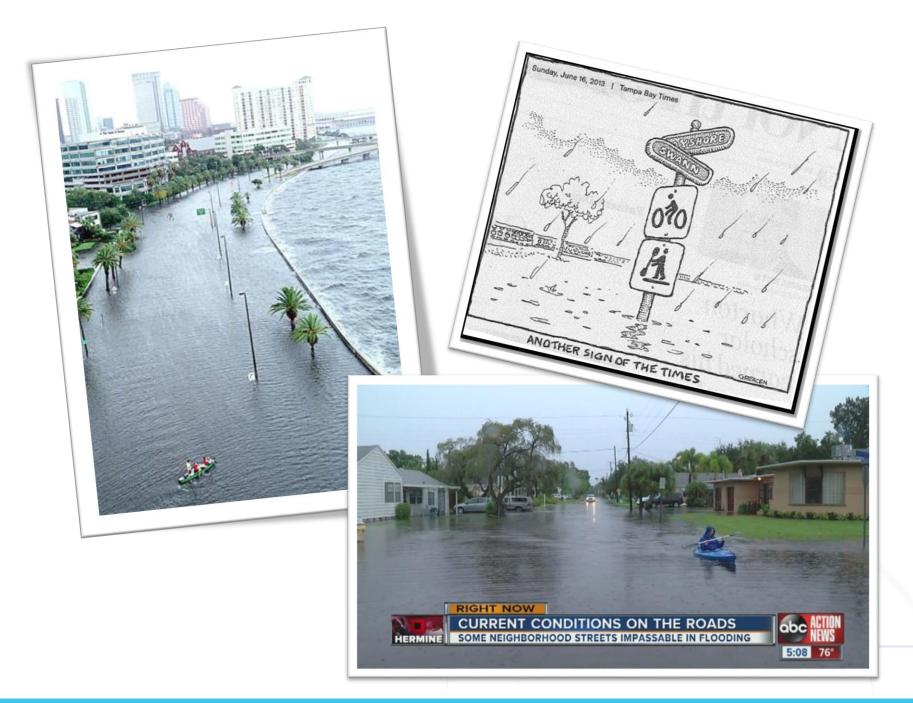


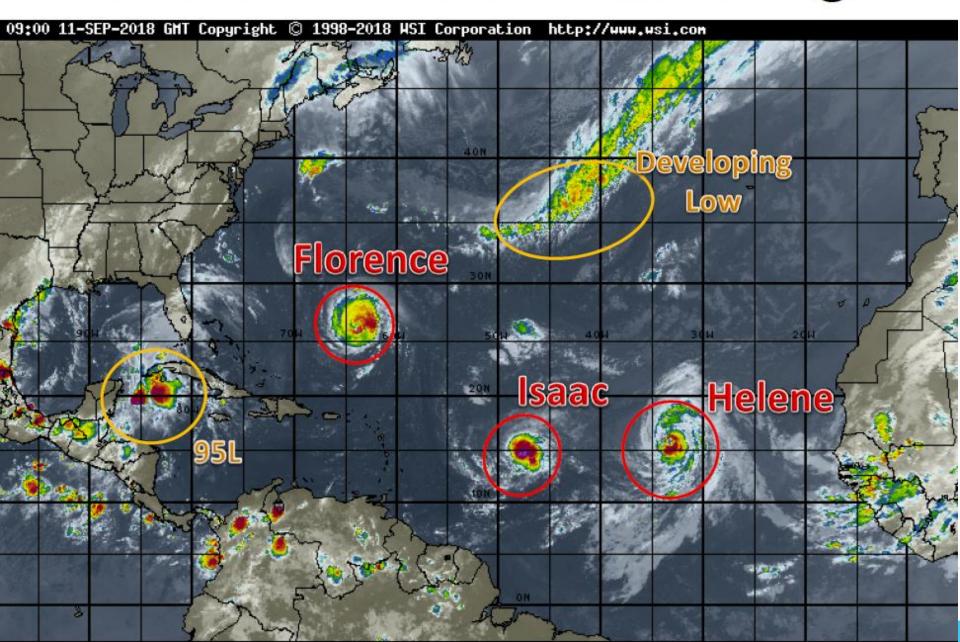
FHWA Resilience & Durability to Extreme Weather Pilot Program

Let's Talk Resilency Session

presented to

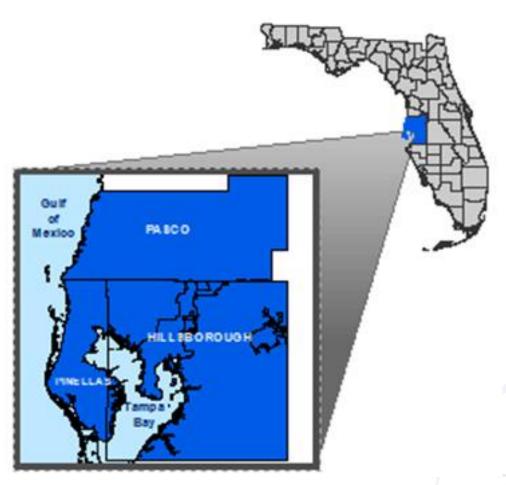

AMPO Annual Conference San Antonio, TX

presented by


Beth Alden, AICP
Hillsborough MPO

Atlantic Basin Satellite Image

Transportation Policy


► Federal Fixing America's Surface Transportation (FAST) Act addresses planning for and expenditures on surface transportation system

- Added planning factor: Improve the resiliency and reliability of the transportation system and reduce or mitigate stormwater impacts of surface transportation
- ► Florida Transportation Plan is statewide plan guiding Florida's transportation future
 - ▶ Agile, Resilient, and Quality Infrastructure Goal
- Florida Statutes Long Range Transportation Plans
 - Metropolitan planning organizations are encouraged to consider strategies that integrate transportation and land use planning to provide for sustainable development and reduce GHG emissions

Resilient Tampa Bay – Transportation: Background

- » Tampa Bay TMA
 - 2.8M Population
 - 2nd largest pop. In FL.
 - 1000+ miles of shoreline
 - 39% pop. in flood zones
- » Regional vulnerability assessment of surface transportation assets
 - Incorporate into LRTPs, hazard mitigation, emergency mgt, and PDRP plans

FHWA 2018-2020 Pilot Program : Resilience & Durability to Extreme Weather

- 1 of 11 Pilot projects looking at integrating into agency practices, tools & resources, or deployment & monitoring.
- Tampa BayTMA
- Caltrans

- Atlanta Regional Commission
- Corpus Christi MPO
- Quad Cities lowa/Illinois MPO
- Houston-Gaveston Area Council

MassDOT

- Mid-America
 Regional Council (Kansas City, MO & Johnson Co, KS)
- UDOT

Navel Facilities
 Engineering
 Command (East and Gulf Coast)

PennDOT

Resilient Tampa Bay – Transportation: Project Team

Work Plan

Climate & Weather

Critical

Linkages

Obtain Data

Identify Vulnerable Areas

Identify at risk Transportation

 Stakeholder Engagement

 Quantitative Analysis of Critical links

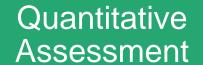
Fall 2018

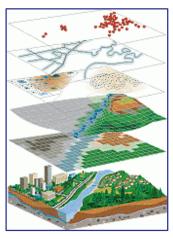
Fall 2018 Winter 2019

Adaptation Strategies

- Econometric Analysis
- Adaptation/ Mitigation Strategies
- Include in Decision Making

Winter/ Spring 2019 Final Report


Summer/Fall 2019


Criticality Determination

Incorporating stakeholder input into quantitative assessment

- Stakeholder and practitioner input
- Persistent flooding locations
- Leveraging prior planning work (Current LRTP, hazard mitigation and local mitigation strategies)

Weighting facilities/locations based on stakeholder input

- GIS-based Quantitative Analysis
- Context Sensitive Criticality Construct (Transportation disadvantaged population, social & economic importance)
- Sensitivity, exposure level and adaptive capacity

Supporting Image Sources: Sustainable Convos, Northern Arizona Healthcare

Data/Information Coordination

One Bay

Hillsborough County Perils of

Flood Act Matrix of Impacts

Tampa

Bay RPC

Pinellas County Restore Act

Vulnerability Assessment

Initiative

Local

Government

Public

Works

Tampa Sea Level Rise Vulnerability Assessment

Local Mitigation Strategies

Post Disaster Redevelopment Plans

Resilient Tampa Bay

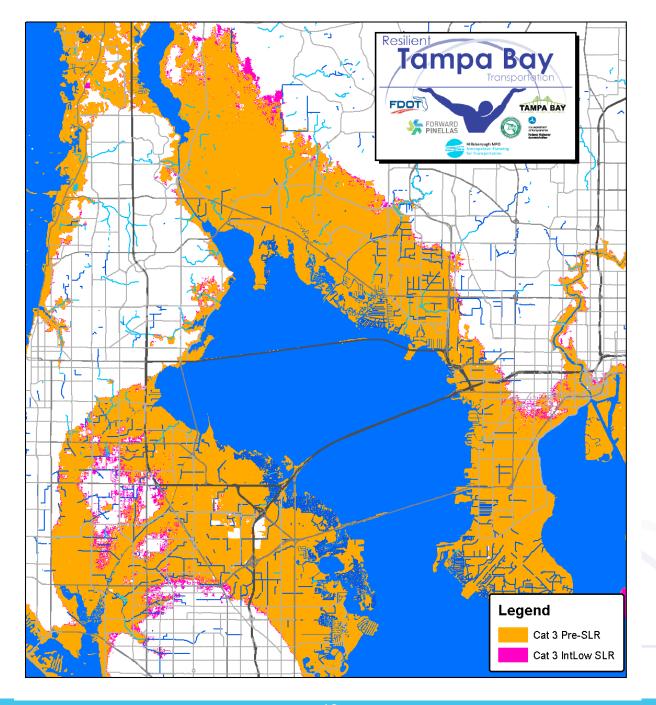
Transportation:

Vulnerability Assessment

and Adaptation Pilot Project

Tampa Bay RPC

Transit Agency Asset and


Operational Plans

MPO Long Range

Transportation Plans

Water Transportation

Resilient Tampa Bay Transportation

ME 2045 Transportation Plan

We Want to Hear from You!

What's Important to You? Consider these priorities

Storm Vulnerability

Traffic Jams

Open/Green Spaces

Alternatives to Driving

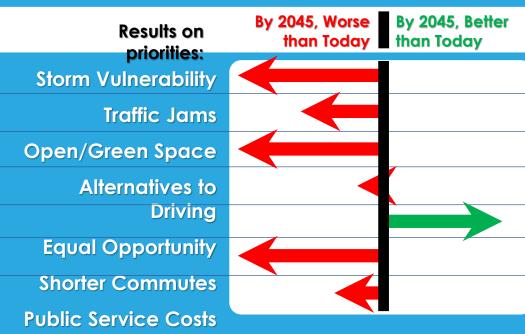
Equal Opportunity

Shorter Commutes

Public Service Costs

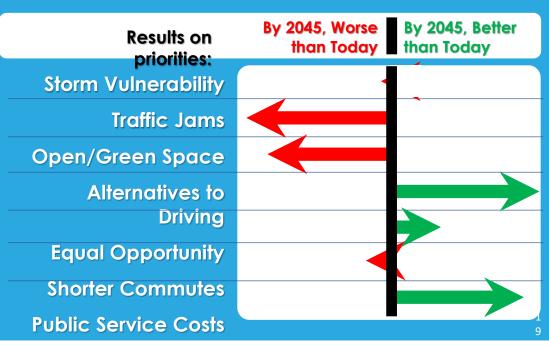
1

Rate Scenario A Technology Focus




Rate Scenario B Expressway Focus

Rate Scenario C Transit Focus



What's in the current Hillsborough Imagine 2040 Plan? (Adopted 11/12/14)

Preserve System

Real Choices when not Driving

Reduce Crashes & Vulnerability

Major Capacity Projects For Economic Growth

Minimize Traffic for Drivers & Shippers

Hillsborough MPO 2040 LRTP Performance Measures

Preserve the System

- □ Road resurfacing schedule
- Bridge repair schedule
- Vehicle replacement schedule

Reduce Crashes & Vulnerability

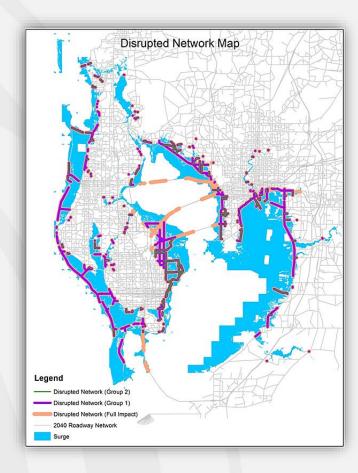
- Total crashes, fatal crashes, and walk/bike crashes
- Economic impact of a major storm

Manage Traffic for Drivers & Shippers

- Peak-hour travel time reliability
- Affected truck trips

Real Choices for Non-Drivers

People & jobs served by the bus system and trail/sidepath network


New for 2045 - Major Capacity Projects for Economic Growth

Vulnerability Reduction Investment Assumed in 2040 Plan

Investment Level	Benefits and Costs				
	\$31 Million per year				
Scenario 1	Continue today's stormwater drainage improvement programs				
Level 1	Category 3 storm impacts: - 8 weeks major roads may be unusable - \$266 million economic loss				
	\$39 Million per year				
Scenario 8b	Continue today's stormwater drainage, plus: raise road profiles, enhance base, protect shorelines from wave damage				
Level 3	Category 3 storm impacts: - 3 weeks major roads may be unusable - \$119 million economic loss (cut in half!)				

Economic losses cut in half

Saffir-Simpson Hurricane Wind Scale

(1 = least extreme; 5 = most extreme)

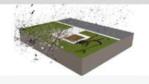
Category 1

- Winds range from 74 to 95 mph
- Minor damage to property (roof damage)
- Injuries to humans are isolated
- Short-term power outages

Category 2

- Winds range from 96 to 110 mph
- Significant property damage, flooding
- Increased threat to humans due to falling debris
- Extensive, multi-day power outages

Category 3


- Winds range from 111 to 130 mph
- Mobile and frame homes destroyed, extensive flooding
- Evacuation necessary for human safety
- Electricity, water unavailable for up to several weeks

Category 4

- Winds range from 131 to 155 mph
- Houses, shopping centers irreparably damaged
- Humans at serious risk of death in certain areas
- Long-term power outages, water shortages

Category 5

- Winds of **155 mph+**
- Complete destruction of homes, shopping centers
- Trees uprooted, extreme flooding
- Power and water potentially out for months

Source: National Hurricane Center

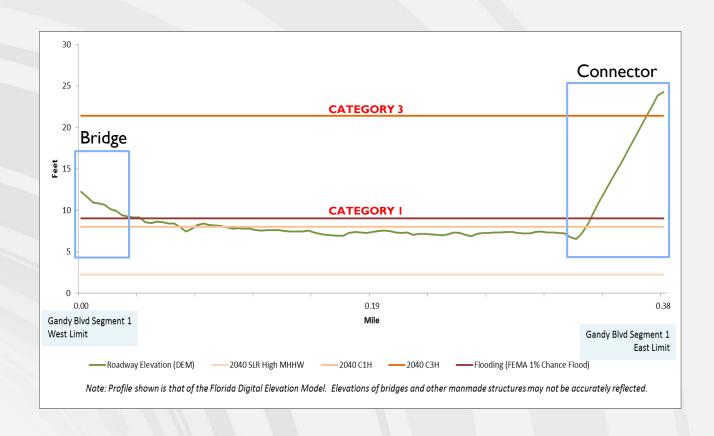
What can we get if we invest in Reduced Vulnerability

Based on illustrative Cat 3 storm occurring in next 20 years

Investment Level I – \$988 M (current spending trend x 20 years, in YOE \$)
☐ Routine drainage improvements
Up to 8 weeks of road network disruption with sample Cat 3 storm
☐ Economic loss to Hillsborough County: \$266 M
Investment Level 2 - \$1,025 M (in YOE \$)
☐ Interstates only: drainage improvements, shoreline armoring & wave attenuation
☐ Up to 6 weeks of road network disruption with sample Cat 3 storm
☐ Economic loss to Hillsborough County: \$153 M or 42% less
\$31 M investment results in \$113 M benefit
φ91 11 investment results in φ119 11 benefit
Investment Level 3 – \$1,159 M (in YOE \$)
☐ Interstates & arterials: drainage improvements, shoreline armoring & wave attenuation
3 weeks of road network disruption with sample Cat 3 storm
Economic loss to Hillsborough County: \$119 M or 55% less
□ \$112 M investment results in \$147 M benefit
Estimate described lesson and based on modeling highway assured
Estimated avoided losses are based on making highway segments
less vulnerable to storm & flood damage

Typical Costs for Reduced Vulnerability

Risk Mgmt. Strategy	Unit	Unit Cost	Base/Low	Medium	High
Raise profile/ strengthen base*	Lane mile	\$268,883	\$268,883	\$20,854,540	\$68,807,075
Wave attenuation (WADs)	1 Unit	\$750	\$750	\$3,887,400	\$17,628,600
Shoreline protection (riprap)	Lin. ft.	\$350	\$350	\$5,442,360	\$24,680,040
Drainage improvements*	CL mile	\$14,737	\$14,737	\$816,566	\$816,566
TOTAL				\$31,000,866	\$111,932,281
TOTAL plus contingency	20%			\$37,201,039	\$134,318,738

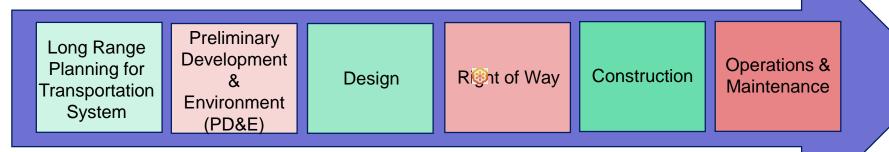

^{*} Counts marginal costs only. All costs are approximate

Pilot Project Follow-Up Study (2016)

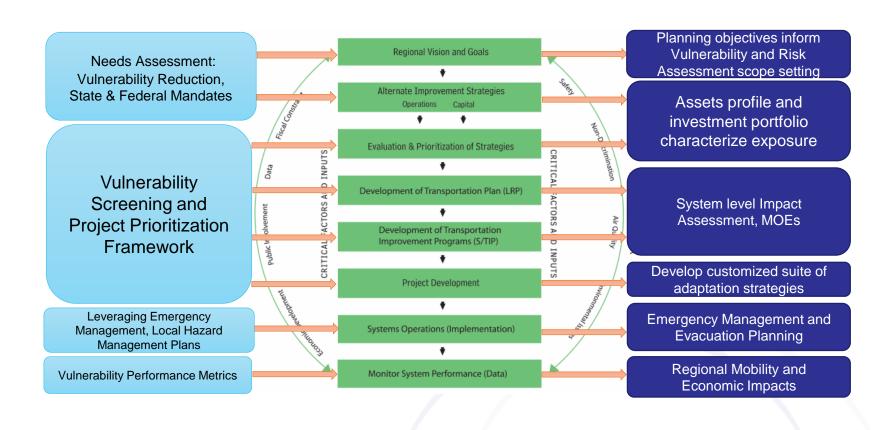
- Gandy Boulevard critical segment in 2014 Vulnerability Assessment
 - » I/3-mile segment connecting bridge to planned expressway
 - » \$1.9M estimated for strategies

Inundation Profile - Gandy Blvd (segment)

Adaptation Options


Treatment	Cost Differential	Level of Risk
Do nothing	None initially. Reconstruction cost is \$3,312,000	Highest Risk. Required if roadway is destroyed.
Upgrade to full-depth concrete pavement	\$676,000	Medium Risk. Road damage possible if inundation occurs.
Raise Profile	\$1,119,000	Low Risk. Inundation from storm surge, rain or tide related flooding.
Erosion control via vegetation	\$104,544	Low Risk. Embankment damage or washout if inundation occurs.
Pier protection via vegetation	\$30 per pier (total depends on design)	Low Risk. Pier scour or damage possible if surge occurs.

Strategy Refinement for Implementation


- Refined strategies appropriate Selmon Elevated extension at Gandy Blvd.
- Developed conceptual designs & specific preengineering cost estimates
 - » Within limit of \$1.9M budget
 - » Assume strategy mainstreaming as part of a project
- Offer low-risk, high benefit solutions to incorporate into elevated expressway extension PD&E proposal.

Planning for Transportation System and Transportation Project Development Phases

Increasing transportation resiliency is not linear. Need to address during all phases simultaneously.

Linkages to the Long Range Planning Process

Contact Information

Beth Alden, AICP Executive Director aldenb@plancom.org

813.273.3774 x 318

Thank you!