Scenario Planning at the Sub-Regional Level

A Case Study on How One Region Linked and Tested Land Use Decisions, Community Priorities, and Needed Transportation Investments
The Hardin Valley Mobility Plan examines existing and future mobility needs for all users, including pedestrians, cyclists, and motorists with the goal of providing an efficient, safe, and effective multimodal network.
PROJECT OVERVIEW

Identify additional small- and large-scale transportation improvements to accommodate future growth

Estimate planning-level costs for improvements

Prioritize improvements and develop implementation timeline
KNOXVILLE TPO REGION

6 Counties
18-Member Executive Board
24-Member Technical Committee

~899,000 existing residents
~1.2 million residents by 2040

~413,000 existing jobs
~505,000 jobs by 2040
STUDY AREA

~38 square miles
~170 miles of road
~37,000 residents
~28,000 jobs
Growth in this area of the County has been rapidly increasing, particularly with more and more dense residential development.
The County developed a land use vision for this area, known as the Northwest County Sector Plan, but never tested the implications of those decisions on the transportation system.

+84% increase in agricultural/rural residential
+86% increase in mixed use
+66% increase in office
Since the NW Sector Plan was adopted, there have been more plan amendments in this area than anywhere else in the County.
PROJECT ENGAGEMENT

500 public meeting participants

7 one-on-one stakeholder interviews

3,500 points of online map input

860 online survey responses
Educating the public on the completed Sector Plan and what it accomplished as well as how future development can impact infrastructure needs.
• TPO projections are derived from the regional travel demand model, which included 2030 as a horizon year.

• Historic growth rates were calculated based on building permit data from 2014-2018.

• Utility District projections include assumptions for full build out conditions needed for water treatment facility planning.

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Population Growth</th>
<th>Resulting Annual % Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional TPO Projection</td>
<td>+11,500</td>
<td>2.6%</td>
</tr>
<tr>
<td>Historic Growth Rates</td>
<td>+21,700</td>
<td>4.9%</td>
</tr>
<tr>
<td>Utility District Projections</td>
<td>+27,500</td>
<td>6.2%</td>
</tr>
</tbody>
</table>
• TPO projections are derived from the regional travel demand model, which included 2030 as a horizon year.

• InfoGroup growth rates were calculated based on data purchased in 2014 and 2018.

• LEHD growth rates were calculated based on employment changes from 2010-2015.

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Employment Growth</th>
<th>Resulting Annual % Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional TPO Projection</td>
<td>+21,800</td>
<td>6.6%</td>
</tr>
<tr>
<td>InfoGroup Growth Rates</td>
<td>+2,805</td>
<td>0.8%</td>
</tr>
<tr>
<td>LEHD Growth Rate</td>
<td>+7,752</td>
<td>2.3%</td>
</tr>
</tbody>
</table>
FUTURE GROWTH

- Employment Growth: +10,000 new jobs
- Residential Growth: +9,000 new housing units
- Population Growth: +19,500 additional residents
We developed three different development scenarios to depict possible land use decisions and their implications on likely investments for future transportation needs.
Rural Conservation

How much agricultural/rural land is converted to other uses in each scenario?

Housing Diversity

How does the mix of single-family and multifamily residential change with each scenario?

Location of Growth

How does the location of development density change with each scenario?

Hillside & Ridgetop Protection

How well does each scenario limit development with the intent of preserving topographical features?
SUB-ALLOCATION PROCESS

Step #1
Determine Pipeline Developments

Using a combination of parcel lines, building permit data, and building structure data we were able to discern where new residential development had been approved, but not yet constructed.
SUB-ALLOCATION PROCESS

Step #2
Determine Target Housing Mix

Using historic building permit data and recent plans, each scenario was assigned a different ratio of SFR and MFR, which was related to historic trends and proposed density locations.
SUB-ALLOCATION PROCESS

Step #3
Calculate Capacity for Development

Existing zoning classifications, expected density levels, and assumptions on land utilization varied by scenario and were used to determine where there was available capacity for development.
SUB-ALLOCATION PROCESS

Step #4
Assign Future Residential Development

Consideration for historically high-growth areas, availability of large parcels, preservation policies, and accessibility to major roadway facilities drove the geographic location of future residential development.
Capacity for non-residential development was calculated based on zoning and redevelopment potential. Geographic assignment was based on proximity to existing employment centers and access to major infrastructure.
SUB-ALLOCATION PROCESS

Step #6
Manual Adjustments and Model Runs

All future development allocations were checked with minimal adjustments made where necessary. These projections served as inputs into the regional travel demand model to determine transportation impacts of the development scenarios.
Process Outputs and Priorities

1. Increasing Roadway Safety
2. Preservation of Rural Areas, Open Space, & Hilltops
3. Increased Opportunities to Walk & Bike
4. Greater Connectivity to Interstate & Pellissippi Pkwy
5. Development Options that Require Less Driving
6. Homes on Large Lots
7. Access to Jobs, Shopping, & Schools
8. Diverse Housing Options
9. Grow in Undeveloped Areas
10. Reduce Greenhouse Gas Emissions
Process Outputs and Priorities

- Safety
- Rural Preservation
- Walk & Bike
- Connectivity
- Less Driving
- Large-Lot Homes
- Accessibility
- Diverse Housing
- Rural Growth
- Air Quality
- Relative Exposure with Vehicle Miles Traveled (VMT)
- Growth in Rural and Protected Areas
- Intrazonal Trips
- Growth in Close Proximity to Facilities
- Vehicle Miles Traveled (VMT) Total and on Rural Facilities
- Growth in Rural Areas
- Population in Close Proximity to Schools and Employment
- Mix of SFR/MFR
- Percent of Households in Rural Areas
- Vehicle Hours Traveled (VHT)
Process Outputs and Priorities

<table>
<thead>
<tr>
<th>Variable</th>
<th>Scenario #1 Current Trends</th>
<th>Scenario #2 Sector Plan</th>
<th>Scenario #3 Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>--</td>
<td>↑</td>
<td>↑ ↑</td>
</tr>
<tr>
<td>Rural Preservation</td>
<td>--</td>
<td>↑</td>
<td>↑ ↑</td>
</tr>
<tr>
<td>Walk & Bike</td>
<td>--</td>
<td>↑</td>
<td>↑ ↑</td>
</tr>
<tr>
<td>Connectivity</td>
<td>--</td>
<td>↑ ↑</td>
<td>↑</td>
</tr>
<tr>
<td>Less Driving</td>
<td>--</td>
<td>↑</td>
<td>↑ ↑</td>
</tr>
<tr>
<td>Large-Lot Homes</td>
<td>--</td>
<td>↓</td>
<td>↓ ↓</td>
</tr>
<tr>
<td>Accessibility</td>
<td>--</td>
<td>↑ ↑</td>
<td>↑</td>
</tr>
<tr>
<td>Diverse Housing</td>
<td>--</td>
<td>↑</td>
<td>↑ ↑</td>
</tr>
<tr>
<td>Rural Growth</td>
<td>--</td>
<td>↓</td>
<td>↓ ↓</td>
</tr>
<tr>
<td>Air Quality</td>
<td>--</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>
Showing the public that accommodations for anticipated growth will likely require investment in the transportation infrastructure with types of improvements directly linked to land use decisions.
Engagement resulted in a list of projects, prioritized based on cost, constructability, previous input, and implementation timeframes.
Final product resulted in the identification of 3 priority corridors for the County to move forward with improving.
• **Challenge** - Granularity of travel demand model inputs limited the ability to link scenario outputs and project needs.

 ➔ **Future Consideration:** Use different planning tool when looking at micro-level land use changes

• **Challenge** – Linking proposed land use and transportation needs in separate efforts, two years apart, was slightly confusing for public.

 ➔ **Future Consideration:** Combine the planning of land use and transportation investments in a side-by-side effort
Dynamic Message Signs (DMS) in congested locations really boost attendance at public meetings.
LESSONS LEARNED

Stakeholder advocates helped spread the word, manage crowds at the meetings, and provide feedback heard in the community.