Transportation Modeling and the Traffic Impact Analysis Process

AMPO National Conference
Clark County, NV October 2015
The views and opinions expressed during this presentation are those of the presenters and do not represent the official policy or position of FHWA and do not constitute an endorsement, recommendation or specification by FHWA. The presentation is based solely on the professional opinions and experience of the presenters and is made available for information and experience sharing purposes only.
Special thanks to....

TMIP Staff
Sarah Sun, TMIP Outreach Manager

Cambridge Systematics support staff
Tom Rossi / Martin Milkovits
Jason Evans / Rosemary Dolphin

Panelists
Alan Horowitz, Professor of Civil Engineering
 University of Wisconsin-Milwaukee
Mei Ingram, Sr. Research Associate
 Inst. for Transportation Research, NC State
Sean McAtee, Sr. Associate
 Cambridge Systematics, Denver, CO
Chris Comeau, Transportation Planner
 Bellingham, WA
Paul Basha, Traffic Engineer
 Scottsdale, AZ
Why A Peer Review?

To improve the role of the FMPO Regional Travel Model in the Transportation Impact Analysis Process

To eliminate the strife

To give bikes, peds, & transit equal treatment
Why this is important

• Add value for member agencies
• Magnitude of private investment in transportation system
• Legal and financial implications for proportional share
• Getting the details right for non-motorized modes
Major Take-Aways

• Regional Model > Site Plan
 – Two sets of often independent lessons
• Good models can help:
 – Trip distribution
 – Trip assignment / Proportional share
 – Multimodal evaluations
• Tracking TIA processes can inform updates to regional model inputs
• One size doesn’t fit all
The FMPO Region

- 2 hours north of Phoenix
- Study area size: 525 sq. miles
- Total population: 90,301
- Transit awards
 - Walk-Friendly
 - Bike-Friendly
TRANSPORTATION IMPACT ANALYSIS

PURPOSE

• Ensure Safe and Efficient Transportation

• Primary Beneficiary – Business and Customers

• Secondary Beneficiary – Travelers and Public Agency

FOCUS NOW: APPROVAL
TYPICAL PRELIMINARY MEETING

• Existing and Proposed Land Uses
• Preliminary Site Plan
• Analysis Scope
 – Small – Trip Generation Comparison Only
 – Medium – Close Intersection(s) and Opening Year
 – Large – Numerous Intersections and Years
• Trip Generation and Trip Distribution
 – Some Agencies Second Meeting
Primary Decision Points

Analysis Periods
- Weekday / Morning / Evening Peak Hour
- Saturday Peak Hour

Trip Generation (& Reduction)
- Land Use and Independent Variable
- Rate versus Equation versus Plotted Points

Trip Distribution & Assignment
- Population or Employment or Traffic Volumes or Model
SITE PLAN
Need & Model Practice

- Access, circulation
- Traffic Analysis Zone (zones) structure
- Centroid connectors / Network
ANALYSIS PERIOD
Need, Model Practice & Recommendation

• **Peak Hours:** AM/PM/maybe Saturday

• **24-hour model**
 – With a “weaker” PM Peak Hour

• **AM, PM & Off-peak**
 – Strengthen calibration

• **Not “Dynamic Traffic Assignment”**
TRIP GENERATION
Shopping Center – Land Use Code 820
Average Vehicle Trip Ends vs. 1,000 square feet Gross Leasable Area
on a WEEKDAY AM Peak Hour of Adjacent Street

Fitted Curve Equation: \(\ln(T) = 0.61 \ln(X) + 2.24 \)

\(R^2 = 0.56 \)

The Danger of Averages
Shopping Center – Land Use Code 820
Weekday AM Peak Hour of Adjacent Street

WEIGHTED AVERAGE RATE: 0.96

AVERAGE OF RATES 2.06

WEIGHTED AVERAGE RATE IS 118% LESS THAN AVERAGE OF RATES
Need, Practice & Recommendation

• **ITE Trip Rates**
 – 60 uses & 5 trip purposes
 – Ability to change to more effective uses

• **Population & Employment (SE) Data**
 – Introduce cross-classification
 – Introduce K-12 trip purpose
Why Land Use & Not SE

• Current Land Use
 – 60 land uses with associated ITE trip rates
 – Derived from Assessor Data
 – Aggregated to TAZ’s

• Build Out & Horizon Years
 – Twenty place-types with population density and job intensity assumptions
 – Place-types converted to Land Use Model codes
 – A Build Out year based on state growth rates.
 – Regional districts assigned low to high low growth rates
 – Interpolations for years 2020, 2030 and 2040
Build Out Land Use in FMPO
Transportation Districts
TRIP GENERATION
TRIP REDUCTION
TRIP REDUCTION (or credit)

JUSTIFY EACH DEDUCTION SEPARATELY

TRANSIT – Sufficient frequency and seats

BICYCLES – Adequate bicycle parking and incentives

PEDESTRIANS – Adequate sidewalks and destinations

INTERNAL CAPTURE – Corresponding land uses

URBAN IN-FILL – High current traffic

PASS-BY – Independent of urban in-fill
Land Use Goals

• Prioritize Infill Over Sprawl

• Several master-planned mixed use “Urban Villages”

• All well-connected with
 ✓ High-frequency (15 min) transit
 ✓ ADA Pedestrian Sidewalks
 ✓ Marked Arterial Bike Lanes
 ✓ Multi-use “Greenways” Trails
 ✓ Multimodal Arterial Streets
Concurrency Service Areas (CSA)

“Mobility-Sheds” based on land use context

3 Urban Village (Type 1) Green
Higher density mixed use urban

2 Urban Institutional (Type 1A)
Western Washington University
Whatcom Community College

5 Transition (Type 2) Yellow
Moderate density neighborhoods

7 Suburban (Type 3) Red
Lower density neighborhoods
Auto-centric commercial (north)
Non-Motorized Plans

Pedestrian Master Plan
- 266-mile pedestrian network
- ~ 170 miles (64%) complete
- Identifies pedestrian needs
- Prioritizes improvements

Bicycle Master Plan
- 170-mile bicycle network
- ~ 68 miles (40%) complete
- Identifies bicycle needs
- Prioritizes improvements

Multiuse Greenways Trails
- Extensive citywide trail system
- 65 existing trail miles

Mode Share & Goals

<table>
<thead>
<tr>
<th>Mode</th>
<th>2008-2012</th>
<th>2015</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian</td>
<td>8.2%</td>
<td>11%</td>
<td>13%</td>
</tr>
<tr>
<td>Bicycle</td>
<td>4.1%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Transit Bus</td>
<td>5.8%</td>
<td>4%</td>
<td>6%</td>
</tr>
<tr>
<td>Automobile</td>
<td>75.9%</td>
<td>80%</td>
<td>75%</td>
</tr>
<tr>
<td>Work at Home</td>
<td>5.0%</td>
<td>~</td>
<td>~</td>
</tr>
</tbody>
</table>

Notes:
1. 2008-2012 American Community Survey (U.S. Census) data
2. Bellingham Comprehensive Plan Transportation Element
Creating Multimodal Concurrency Measurements

- 2008 – consultants help City study 15 alternative methods, develop preferred alternative, & implement Jan 1, 2009
- “Plan-based” - Concurrency Service Areas (CSA) [“Mobility Sheds”]
 Variable typology & weighting factors based on land use context
- Pedestrian = % completeness of network in Pedestrian Master Plan
- Bicycle = % completeness of network in Bicycle Master Plan
- Multiuse Trails = % completeness relative to Ped & Bike networks
- Transit = WTA seated 2-way capacity, frequency, & ridership counts
- Vehicles = pm peak 2-way arterial volume-to-capacity (v/c) – HCM LOS

5 measurements instead of traditional auto-only v/c LOS
“Policy Dials”

Mode Weight Factors

Based on Land Use Typology

<table>
<thead>
<tr>
<th>Mode</th>
<th>Transportation Concurrency Service Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type 1¹</td>
</tr>
<tr>
<td>Motorized</td>
<td></td>
</tr>
<tr>
<td>Auto</td>
<td></td>
</tr>
<tr>
<td>Mode weight factor⁴</td>
<td>0.70</td>
</tr>
<tr>
<td>Transit</td>
<td></td>
</tr>
<tr>
<td>Mode weight factor⁵</td>
<td>1.00</td>
</tr>
<tr>
<td>Non-Motorized</td>
<td></td>
</tr>
<tr>
<td>Pedestrian</td>
<td></td>
</tr>
<tr>
<td>Percent threshold for minimum system complete⁶</td>
<td>50%</td>
</tr>
<tr>
<td>Person trip credit for 1% greater than minimum threshold⁷</td>
<td>20</td>
</tr>
<tr>
<td>Mode weight factor⁸</td>
<td>1.00</td>
</tr>
<tr>
<td>Bicycle</td>
<td></td>
</tr>
<tr>
<td>Percent threshold for minimum system complete</td>
<td>50%</td>
</tr>
<tr>
<td>Person trip credit for 1% greater than threshold</td>
<td>20</td>
</tr>
<tr>
<td>Mode weight factor⁹</td>
<td>1.00</td>
</tr>
<tr>
<td>Multi-Use Trails¹⁰</td>
<td></td>
</tr>
<tr>
<td>Person trip credit for 1% greater than threshold¹¹</td>
<td>10</td>
</tr>
<tr>
<td>Mode weight factor¹²</td>
<td>1.00</td>
</tr>
</tbody>
</table>
What’s Next? Connectivity Metrics

ViaCity

Route Directness Index (RDI)

CSA #9 Composite Scores
BMC 19.06 Urban Village Vehicle Trip Reduction Credits

TABLE 2 – URBAN VILLAGE VEHICLE TRIP REDUCTION CREDITS

<table>
<thead>
<tr>
<th>Menu of Location Factors and Performance Measures to Reduce Vehicle Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: Reductions below are additive and may not exceed a total of 50%</td>
</tr>
</tbody>
</table>

1.) MIXED USE URBAN VILLAGE LOCATION
(Based on ITE Internal Trip Capture - Mixed Use Urban Environment)

<table>
<thead>
<tr>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
</tr>
</tbody>
</table>

2.) WTA TRANSIT PROXIMITY (Only one transit proximity reduction below may be used)
Development fronts on a high-frequency WTA GO Line
Development within 1/4-mile of WTA GO Line
Development fronts on standard WTA Route (30 - 60 min)
Development within 1/4-mile of standard WTA Route (30 - 60 min)

<table>
<thead>
<tr>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
</tr>
<tr>
<td>7%</td>
</tr>
<tr>
<td>5%</td>
</tr>
<tr>
<td>2%</td>
</tr>
</tbody>
</table>

3.) EMPLOYER MANDATORY COMMITMENT TO COMMUTE TRIP REDUCTION (CTR)
CTR/TDM commitment combining economic incentives with transportation services

<table>
<thead>
<tr>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
</tr>
</tbody>
</table>

4.) VOLUNTARY ANNUAL WTA TRANSIT PASS PROVISION (Non-CTR)
2-year transit pass provided for residential units = 1% per unit pass
2-year transit pass provided for employees = 1% per employee pass

<table>
<thead>
<tr>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
</tr>
</tbody>
</table>

5.) VOLUNTARY CAR SHARE PARTICIPATION OR PROVISION (Non-CTR)
Car Share Vehicle(s) Parked On Residential or Employment Site = 2% per vehicle
Car Share membership fee provided for residential units = 2% per unit
Car Share membership fee provided for employees = 2% per employee

<table>
<thead>
<tr>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
</tr>
</tbody>
</table>
“3D”: Density, Diversity & Design

DESIGN

• The model includes design through the inclusion of separate pedestrian, bicycle and transit level-of-service variables.

• LOS scores, to date, are subjective or “empiridotal”
Modal LOS: Ped, Bike & Transit

Ped LOS Variables:
- Missing sidewalks, street or intersection density, crossing or cross-walk density weighted by type

Bike LOS Variables:
- BCI, Crossings, Street or intersection density, missing links

Transit LOS Variables:
- Proximity to bus stops (1/4 and 3/8 mile); Frequency of service. Influenced heavily by walk share
Bike Assignment by BCI

- Traffic speed
- Volume
- Bike lanes
- Lane Widths
- Paved Trail
- Unpaved Trail
- Width, etc.
Need, Practice & Recommendations

• **Quantitative, Defensible**
• **Qualitative, Defendable**
• Consider implementing a logit-based mode choice model within the overall model stream
 – Asserted parameters based FTA guidance make this a straightforward process
 – Route system, and non-motorized network coding would be required. The Bicycle Comfort Index (BCI) can fit into a logit model.
 – Jump into transit assignment
• Calibration data
TRIP DISTRIBUTION & ASSIGNMENT
Network by Facility Type

Centerline Miles by Facility Type
- Interstate: 82
- Mjr. Arterial: 40
- Mr. Arterial: 64
- Mjr. Collector: 33
- Mr. Collector: 57
- Local (model): 63
- Off model: 413
FMPO Trip Distribution Example

Readily mapped.

Use select link and select zone functions
Need, Practice & Recommendations

• Circulation patterns
• Gravity Model

• Improve accuracy/assumptions:
 – Calibrate/Validate:
 • HH Survey: Flow between sub-areas
 • HBW vs. CTPP Journey-to-work flow
 – Speed feedback loop
 – Gravity Model transition to Destination Choice Model
 – Link Volume delay to Intersection delay
Outstanding Questions

• Future Background Traffic
 – What does the TIA process gain from asking/answering this question?
 – What are the “right” and “logical” inputs to the model?

• Proportional share
Growth factors

- Growth factors by facility type based on a comparison of present and future growth are provided to developers.
- Used when future conditions forecasts are not robust.
- Useful to recognize different growth rates across the region.
Background Level of Service

- Future LOS without the project (background traffic only) can help identify relevant capacity issues
How can we improve these illustrations?
Comprehensive guidance and direction

Truck Trip Generation

Person-trips versus Vehicle-trips

Urban in-fill development

Pass-by Trips

Different Trip Generation calculation techniques

Disaggregate versus Aggregate considerations

Mixed-use development

Transit-friendly development
Recap

- Add value for member agencies
- Magnitude of private investment in transportation system
- Legal and financial implications for proportional share
- Getting the details right for non-motorized modes
Thank You!

The final report will be out soon.

David Wessel
dwessel@flagstaffaz.gov